Sparse Motion Segmentation using Propagation of Feature Labels
نویسندگان
چکیده
The paper considers the problem of extracting background and foreground motions from image sequences based on the estimated displacements of a small set of image blocks. As a novelty, the uncertainty of local motion estimates is analyzed and exploited in the fitting of parametric object motion models which is done within a competitive framework. Prediction of patch labels is based on the temporal propagation of labeling information from seed points in spatial proximity. Estimates of local displacements are then used to predict the object motions which provide a starting point for iterative refinement. Experiments with both synthesized and real image sequences show the potential of the approach as a tool for tracking based online motion segmentation.
منابع مشابه
A New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملFast Semantic Segmentation on Video Using Motion Vector-Based Feature Interpolation
Models optimized for accuracy on challenging, dense prediction tasks such as semantic segmentation entail significant inference costs, and are prohibitively slow to run on each frame in a video. Since nearby video frames are spatially similar, however, there is substantial opportunity to reuse computation. Existing work has explored basic feature reuse and feature warping based on optical flow,...
متن کاملMoving Object Segmentation Using Motor Signals
Moving object segmentation from an image sequence is essential for a robot to interact with its environment. Traditional vision approaches appeal to pure motion analysis on videos without exploiting the source of the background motion. We observe, however, that the background motion (from the robot’s egocentric view) has stronger correlation to the robot’s motor signals than the foreground moti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013